Improved multi-microphone noise reduction preserving binaural cues

Andreas I. Koutrouvelis, Richard C. Hendriks, Jesper Jensen, Richard Heusdens

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

13 Citations (Scopus)
21 Downloads (Pure)

Abstract

We propose a new multi-microphone noise reduction technique for binaural cue preservation of the desired source and the interferers. This method is based on the linearly constrained minimum variance (LCMV) framework, where the constraints are used for the binaural cue preservation of the desired source and of multiple interferers. In this framework there is a trade-off between noise reduction and binaural cue preservation. The more constraints the LCMV uses for preserving binaural cues, the less degrees of freedom can be used for noise suppression. The recently presented binaural LCMV (BLCMV) method and the optimal BLCMV (OBLCMV) method require two constraints per interferer and introduce an additional interference rejection parameter. This unnecessarily reduces the degrees of freedom, available for noise reduction, and negatively influences the trade-off between noise reduction and binaural cue preservation. With the proposed method, binaural cue preservation is obtained using just a single constraint per interferer without the need of an interference rejection parameter. The proposed method can simultaneously achieve noise reduction and perfect binaural cue preservation of more than twice as many interferers as the BLCMV, while the OBLCMV can preserve the binaural cues of only one interferer.
Original languageEnglish
Title of host publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Subtitle of host publicationProceedings
EditorsMin Dong, Thomas Fang Zheng
Place of PublicationDanvers, MA
PublisherIEEE
Pages460-464
Number of pages5
ISBN (Electronic)978-1-4799-9988-0
DOIs
Publication statusPublished - 19 May 2016
Event2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai International Convention Center, Shanghai, China
Duration: 20 Mar 201625 Mar 2016

Conference

Conference2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Abbreviated titleICASSP
CountryChina
CityShanghai
Period20/03/1625/03/16

Keywords

  • noise reduction
  • LCMV
  • binaural cue preservation,
  • auditory system
  • microphones
  • hearing aids
  • Interference
  • Nickel
  • optimization

Fingerprint Dive into the research topics of 'Improved multi-microphone noise reduction preserving binaural cues'. Together they form a unique fingerprint.

Cite this