Improved SWMM Modeling for Rapid Pipe Filling Incorporating Air Behavior in Intermittent Water Supply Systems

João P. Ferreira*, David Ferras, Dídia I.C. Covas, Zoran Kapelan

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
56 Downloads (Pure)

Abstract

Stormwater management model (SWMM) software has recently become a modeling tool for the simulation of intermittent water supply systems. However, SWMM is not capable of accurately simulating the air behavior in the pipe-filling phase, missing therefore a relevant factor during pipe pressurization. This work proposes the integration of a conventional accumulator model in the existing SWMM hydraulic model to overcome this gap. SWMM source code was modified to calculate the air piezometric head inside the pipe based on the system boundary conditions, and the air piezometric head was incorporated in the SWMM flow rate pressure component. Experimental data were collected during the rapid filling of a pipe system for three possible configurations that are likely to occur in intermittent water supply pipe systems: no air release, small air release, and large air release. Results show that the improved SWMM better describes the effect of the air behavior using the extended transport (EXTRAN) surcharge method when compared to the original SWMM. Results also show that the SLOT method with predefined slot width is not suitable for this purpose; thus, further research is needed to assess if an adjusted slot width could provide better results.

Original languageEnglish
Article number04023004
Number of pages12
JournalJournal of Hydraulic Engineering
Volume149
Issue number4
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Funding

Fundaçao da Ciência e Tecnologia (FCT) SFRH/BD/146709/2019

Fingerprint

Dive into the research topics of 'Improved SWMM Modeling for Rapid Pipe Filling Incorporating Air Behavior in Intermittent Water Supply Systems'. Together they form a unique fingerprint.

Cite this