Improving stormwater infiltration and retention in compacted urban soils at impervious/pervious surface disconnections with biochar

Sraboni Chowdhury, Derya Akpinar, Seyyed Ali Akbar Nakhli, Marcus Bowser, Elizabeth Imhoff, Susan C. Yi, Paul T. Imhoff*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Urban development often results in compacted soils, impairing soil structure and reducing the infiltration and retention of stormwater runoff from impervious features. Biochar is a promising organic soil amendment to improve infiltration and retention of stormwater runoff. Soil at the disconnection between impervious and pervious surfaces represents a critical biochar application point for stormwater management from urban impervious features. This study tested the hypothesis that biochar would significantly improve water retention and transmission at four sites, where varying percentages (0%, 2%, and 4% w/w) of biochar were amended to soils between impervious pavement, and pervious grassed slopes. Field-saturated hydraulic conductivity (Ksat) and easily drainable water storage capacity were monitored at these sites for five months (two sites) and 15 months (two sites). At the end of the monitoring periods, the physical, chemical, and biological properties of each site's soil were assessed to understand the impact of biochar on soil aggregation, which is critical for improved soil structure and water infiltration. Results indicated that the field Ksat, drainable water storage capacity, and plant available water content (AWC) were 7.1 ± 3.6 SE, 2.0 ± 0.3 SE, and 2.1 ± 0.3 SE times higher in soils amended with 4% biochar, respectively, compared to the undisturbed soil. Factor analysis elucidated that biochar amendment increased the organic matter content, aggregate mean weight diameter, organo-mineral content, and fungal hyphal length while decreasing the bulk density. Across the 12 biochar/soil combinations, the multiple linear regression models derived from factor analysis described the changes in Ksat and AWC reasonably well with R2 values of 0.51 and 0.71, respectively. Using soil and biochar properties measured before biochar addition, two recent models, developed from laboratory investigations, were found helpful as screening tools to predict biochar's effect on Ksat and AWC at the four field sites. Overall, the findings illustrate that biochar amendment to compacted urban soils can significantly improve soil structure and hydraulic function at impervious/pervious surface disconnections, and screening models help to predict biochar's effectiveness in this context.
Original languageEnglish
Article number121032
Number of pages11
JournalJournal of Environmental Management
Volume360
DOIs
Publication statusPublished - 2024

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Impervious/pervious disconnect
  • Saturated hydraulic conductivity
  • Plant available water content
  • Soil aggregation
  • Factor analysis
  • Predictive models

Fingerprint

Dive into the research topics of 'Improving stormwater infiltration and retention in compacted urban soils at impervious/pervious surface disconnections with biochar'. Together they form a unique fingerprint.

Cite this