Improving the Representation of Long-Term Storage Variations With Conceptual Hydrological Models in Data-Scarce Regions

Petra Hulsman*, Markus Hrachowitz, Hubert H.G. Savenije

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

7 Citations (Scopus)
39 Downloads (Pure)

Abstract

In the Luangwa basin in Zambia, long-term total water storage variations were observed with Gravity Recovery and Climate Experiment, but not reproduced by a standard conceptual hydrological model that encapsulates our current understanding of the dominant regional hydrological processes. The objective of this study was to identify potential processes underlying these low-frequency variations through combined data analysis and model hypothesis testing. First, we analyzed the effect of data uncertainty by contrasting observed storage variations with multi-annual estimates of precipitation and evaporation from multiple data sources. Second, we analyzed four different combinations of model forcing and evaluated their skill to reproduce the observed long-term storage variations. Third, we formulated alternative model hypotheses for groundwater export to potentially explain low-frequency storage variations. Overall, the results suggest that the initial model's inability to reproduce the observed low-frequency storage variations was partly due to the forcing data used and partly due to the missing representation of regional groundwater export. More specifically, the choice of data source affected the model's ability to reproduce annual maximum storage fluctuations, whereas the annual minima improved by adapting the model structure to allow for groundwater export from a deeper groundwater layer. This suggests that, in contrast to previous research, conceptual models can reproduce long-term storage fluctuations if a suitable model structure is used. Overall, the results highlight the value of alternative data sources and iterative testing of model structural hypotheses to improve runoff predictions in a poorly gauged basin leading to enhanced understanding of its hydrological processes.

Original languageEnglish
Article numbere2020WR028837
Number of pages31
JournalWater Resources Research
Volume57
Issue number4
DOIs
Publication statusPublished - 2021

Keywords

  • GRACE
  • hydrology
  • Luangwa Basin
  • modeling
  • poorly gauged
  • semi-arid

Fingerprint

Dive into the research topics of 'Improving the Representation of Long-Term Storage Variations With Conceptual Hydrological Models in Data-Scarce Regions'. Together they form a unique fingerprint.

Cite this