TY - JOUR
T1 - In-plane selective area InSb–Al nanowire quantum networks
AU - Op het Veld, Roy L.M.
AU - Xu, Di
AU - Schaller, Vanessa
AU - Wang, Qingzhen
AU - de Moor, Michiel W.A.
AU - Vermeulen, Kiefer
AU - Bommer, Jouri D.S.
AU - Kouwenhoven, Leo P.
AU - Zhang, Hao
AU - More Authors, null
PY - 2020
Y1 - 2020
N2 - Strong spin–orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we utilize an in-plane selective area growth technique for InSb–Al semiconductor–superconductor nanowire networks. Transport channels, free from extended defects, in InSb nanowire networks are realized on insulating, but heavily mismatched InP (111)B substrates by full relaxation of the lattice mismatch at the nanowire/substrate interface and nucleation of a complete network from a single nucleation site by optimizing the surface diffusion length of the adatoms. Essential quantum transport phenomena for topological quantum computing are demonstrated in these structures including phase-coherence lengths exceeding several micrometers with Aharonov–Bohm oscillations up to five harmonics and a hard superconducting gap accompanied by 2e-periodic Coulomb oscillations with an Al-based Cooper pair island integrated in the nanowire network.
AB - Strong spin–orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum computer and require a network of nanowires. Here, we utilize an in-plane selective area growth technique for InSb–Al semiconductor–superconductor nanowire networks. Transport channels, free from extended defects, in InSb nanowire networks are realized on insulating, but heavily mismatched InP (111)B substrates by full relaxation of the lattice mismatch at the nanowire/substrate interface and nucleation of a complete network from a single nucleation site by optimizing the surface diffusion length of the adatoms. Essential quantum transport phenomena for topological quantum computing are demonstrated in these structures including phase-coherence lengths exceeding several micrometers with Aharonov–Bohm oscillations up to five harmonics and a hard superconducting gap accompanied by 2e-periodic Coulomb oscillations with an Al-based Cooper pair island integrated in the nanowire network.
UR - http://www.scopus.com/inward/record.url?scp=85082584435&partnerID=8YFLogxK
U2 - 10.1038/s42005-020-0324-4
DO - 10.1038/s42005-020-0324-4
M3 - Article
AN - SCOPUS:85082584435
VL - 3
JO - Communications Physics
JF - Communications Physics
SN - 2399-3650
IS - 1
M1 - 59
ER -