TY - JOUR
T1 - In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration
AU - van Midwoud, Paul M.
AU - Sandker, Marjan
AU - Hennink, Wim E.
AU - de Leede, Leo G.J.
AU - Chan, Alan
AU - Weinans, Harrie
PY - 2018
Y1 - 2018
N2 - Injectable thermogels based on poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) containing an acetyl- or propyl endcap and loaded with celecoxib were developed for local drug release. The aim of this study was to determine the effects of the composition of the celecoxib/PCLA-PEG-PCLA formulation on their in vivo drug release characteristics. Furthermore, we want to obtain insight into the in vitro-in vivo correlation. Different formulations were injected subcutaneously in rats and blood samples were taken for a period of 8 weeks. Celecoxib half-life in blood increased from 5 h for the bolus injection of celecoxib to more than 10 days for the slowest releasing gel formulation. Sustained release of celecoxib was obtained for at least 8 weeks after subcutaneous administration. The release period was prolonged from 3 to 6–8 weeks by increasing the injected volume from 100 to 500 µL, which also led to higher serum concentrations in time. Propyl endcapping of the polymer also led to a prolonged release compared to the acetyl endcapped polymer (49 versus 21 days) and at equal injected dose of the drug in lower serum concentrations. Increasing the celecoxib loading from 10 mg/mL to 50 mg/mL surprisingly led to prolonged release (28 versus 56 days) as well as higher serum concentrations per time point, even when corrected for the higher dose applied. The in vivo release was about twice as fast compared to the in vitro release for all formulations. Imaging of organs of mice, harvested 15 weeks after subcutaneous injection with polymer solution loaded with infrared-780 labelled dye showed no accumulation in any of these harvested organs except for traces in the kidneys, indicating renal clearance. Due to its simplicity and versatility, this drug delivery system has great potential for designing an injectable to locally treat osteoarthritis, and to enable tuning the gel to meet patient-specific needs.
AB - Injectable thermogels based on poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) containing an acetyl- or propyl endcap and loaded with celecoxib were developed for local drug release. The aim of this study was to determine the effects of the composition of the celecoxib/PCLA-PEG-PCLA formulation on their in vivo drug release characteristics. Furthermore, we want to obtain insight into the in vitro-in vivo correlation. Different formulations were injected subcutaneously in rats and blood samples were taken for a period of 8 weeks. Celecoxib half-life in blood increased from 5 h for the bolus injection of celecoxib to more than 10 days for the slowest releasing gel formulation. Sustained release of celecoxib was obtained for at least 8 weeks after subcutaneous administration. The release period was prolonged from 3 to 6–8 weeks by increasing the injected volume from 100 to 500 µL, which also led to higher serum concentrations in time. Propyl endcapping of the polymer also led to a prolonged release compared to the acetyl endcapped polymer (49 versus 21 days) and at equal injected dose of the drug in lower serum concentrations. Increasing the celecoxib loading from 10 mg/mL to 50 mg/mL surprisingly led to prolonged release (28 versus 56 days) as well as higher serum concentrations per time point, even when corrected for the higher dose applied. The in vivo release was about twice as fast compared to the in vitro release for all formulations. Imaging of organs of mice, harvested 15 weeks after subcutaneous injection with polymer solution loaded with infrared-780 labelled dye showed no accumulation in any of these harvested organs except for traces in the kidneys, indicating renal clearance. Due to its simplicity and versatility, this drug delivery system has great potential for designing an injectable to locally treat osteoarthritis, and to enable tuning the gel to meet patient-specific needs.
KW - Celecoxib
KW - Drug delivery
KW - Hydrogel
KW - Injectable
KW - Sustained release
UR - http://www.scopus.com/inward/record.url?scp=85051949008&partnerID=8YFLogxK
U2 - 10.1016/j.ejpb.2018.07.026
DO - 10.1016/j.ejpb.2018.07.026
M3 - Article
AN - SCOPUS:85051949008
SN - 0939-6411
VL - 131
SP - 170
EP - 177
JO - European Journal of Pharmaceutics and Biopharmaceutics
JF - European Journal of Pharmaceutics and Biopharmaceutics
ER -