Inclined Quadrotor Landing using Deep Reinforcement Learning

Jacob E. Kooi, Robert Babuska

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

12 Citations (Scopus)

Abstract

Landing a quadrotor on an inclined surface is a challenging maneuver. The final state of any inclined landing trajectory is not an equilibrium, which precludes the use of most conventional control methods. We propose a deep reinforcement learning approach to design an autonomous landing controller for inclined surfaces. Using the proximal policy optimization (PPO) algorithm with sparse rewards and a tailored curriculum learning approach, an inclined landing policy can be trained in simulation in less than 90 minutes on a standard laptop. The policy then directly runs on a real Crazyflie 2.1 quadrotor and successfully performs real inclined landings in a flying arena. A single policy evaluation takes approximately 2.5 ms, which makes it suitable for a future embedded implementation on the quadrotor.
Original languageEnglish
Title of host publicationProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021)
PublisherIEEE
Pages2361-2368
ISBN (Electronic)978-1-6654-1714-3
ISBN (Print)978-1-6654-1715-0
DOIs
Publication statusPublished - 2021
Event2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) - Online at Prague, Czech Republic
Duration: 27 Sept 20211 Oct 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Country/TerritoryCzech Republic
CityOnline at Prague
Period27/09/211/10/21

Fingerprint

Dive into the research topics of 'Inclined Quadrotor Landing using Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this