Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method

Domingo Muñoz-Esparza, Jeremy A. Sauer, Hyeyum Hailey Shin, Robert Sharman, Branko Kosović, Scott Meech, Clara García-Sánchez, Matthias Steiner, Jason Knievel, James Pinto, Scott Swerdlin

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

As a first step toward achieving full physics urban weather simulation capabilities within the resident-GPU large-eddy simulation (LES) FastEddy® model, we have implemented and verified/validated a method for explicit representation of building effects. Herein, we extend the immersed body force method (IBFM) from Chan and Leach (2007, https://doi.org/10.1175/2006JAMC1321.1) to (i) be scale independent and (ii) control building surface temperatures. Through a specific drag-like term in the momentum equations, the IBFM is able to enforce essentially zero velocities within the buildings, in turn resulting in a no-slip boundary condition at the building walls. In addition, we propose similar forcing terms in the energy and mass conservation equations that allow an accurate prescription of the building temperature. The extended IBFM is computationally efficient and has the potential to be coupled to building energy models. The IBFM exhibits excellent agreement with laboratory experiments of an array of staggered cubes at a grid spacing of (Formula presented.) mm, demonstrating the applicability of the method beyond the atmospheric scale. In addition, the IBFM is validated at atmospheric scale through simulations of downtown Oklahoma City ((Formula presented.) m) using data collected during the Joint Urban 2003 (JU03) field campaign. Our LES IBFM results for mean wind speed, turbulence kinetic energy, and SF6 transport and dispersion compare well to observations and produce turbulence spectra that are in good agreement with sonic anemometer data. Statistical performance metrics for the JU03 simulations are within the range of other LES models in the literature.

Original languageEnglish
Article numbere2020MS002141
Number of pages17
JournalJournal of Advances in Modeling Earth Systems
Volume12
Issue number11
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Inclusion of Building-Resolving Capabilities Into the FastEddy® GPU-LES Model Using an Immersed Body Force Method'. Together they form a unique fingerprint.

Cite this