Incremental Nonlinear Control Allocation for an Aircraft with Distributed Electric Propulsion

P. de Heer, C.C. de Visser, M.L. Hoogendoorn, Henk W Jentink

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

78 Downloads (Pure)


In this paper, a new nonlinear control allocation method is presented for a distributed electric propulsion (DEP) aircraft. As the electric propellers can be used actively for control, in addition to the control surfaces, the DEP aircraft is over-actuated. This freedom in control effectors can be exploited with an appropriate control allocation method. All control effectors are, therefore, captured in the incremental nonlinear control allocation (INCA) method, which allows taking into account effector nonlinearities and interactions introduced by the propellers. The INCA method is based on a real-time updated Jacobian model of the control effectiveness, thereby solving an efficient linear control allocation problem. This paper reformulates the original INCA method to optimize the control allocation for minimal propeller power, resulting in more efficient flight. A model predictive control (MPC) controller is added as an actuator dynamics compensation method. This ensures that the commanded control inputs from the INCA controller are achieved. The new controller is compared to a standard incremental nonlinear dynamic inversion (INDI) controller with a translational and rotational loop. It is shown in simulation that by combining INCA with MPC, the tracking performance is improved and efficiency increased by 6.1%.
Original languageEnglish
Title of host publicationAIAA SciTech Forum 2023
Number of pages22
ISBN (Electronic)978-1-62410-699-6
Publication statusPublished - 2023
EventAIAA SCITECH 2023 Forum - National Harbor, MD & Online, Washington, United States
Duration: 23 Jan 202327 Jan 2023


ConferenceAIAA SCITECH 2023 Forum
Country/TerritoryUnited States
Internet address

Cite this