Indirect Haptic Disturbances Enhance Motor Variability, with Divergent Effects on Skill Transfer

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Research on motor learning has found evidence that learning rate is positively correlated with the learner's motor variability. However, it is still unclear how to robotically promote that variability without compromising the learner's sense of agency and motivation, which are crucial for motor learning. We propose a novel method to enhance motor variability during learning of a dynamic task by applying pseudo-random perturbing forces to the internal degree of freedom of the dynamic system rather than directly applying the forces to the learner's limb. Twenty healthy participants practiced swinging a virtual pendulum to hit oncoming targets, either with the novel method or without disturbances, to evaluate the effect of the method on motor learning, skill transfer, motivation, and agency. We evaluated skill transfer using two tasks, changing either the target locations or the task dynamics by shortening the pendulum rod. The indirect haptic disturbance method successfully increased participants' motor variability during training compared to training without disturbance. Although we did not observe group-level differences in learning, we observed divergent effects on skill generalization. The indirect haptic disturbances seemed to promote skill transfer to the altered task dynamics but limited transfer in the task with altered target positions. Motivation was not affected by the haptic disturbances, but future work is needed to determine if indirect haptic noise negatively impacts sense of agency. Increasing motor variability by indirect haptic disturbance is promising for enhancing skill transfer in tasks that incorporate complex dynamics. However, more research is needed to make indirect haptic disturbance a valuable tool for real-life motor learning situations.

Original languageEnglish
Title of host publicationProceedings of the 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024
PublisherIEEE
Pages1269-1274
Number of pages6
ISBN (Electronic)979-8-3503-8652-3
DOIs
Publication statusPublished - 2024
Event10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024 - Heidelberg, Germany
Duration: 1 Sept 20244 Sept 2024

Publication series

NameProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
ISSN (Print)2155-1774

Conference

Conference10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024
Country/TerritoryGermany
CityHeidelberg
Period1/09/244/09/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Indirect Haptic Disturbances Enhance Motor Variability, with Divergent Effects on Skill Transfer'. Together they form a unique fingerprint.

Cite this