Inferring network properties based on the epidemic prevalence

Research output: Contribution to journalArticleScientificpeer-review

3 Citations (Scopus)
24 Downloads (Pure)

Abstract

Dynamical processes running on different networks behave differently, which makes the reconstruction of the underlying network from dynamical observations possible. However, to what level of detail the network properties can be determined from incomplete measurements of the dynamical process is still an open question. In this paper, we focus on the problem of inferring the properties of the underlying network from the dynamics of a susceptible-infected-susceptible epidemic and we assume that only a time series of the epidemic prevalence, i.e., the average fraction of infected nodes, is given. We find that some of the network metrics, namely those that are sensitive to the epidemic prevalence, can be roughly inferred if the network type is known. A simulated annealing link-rewiring algorithm, called SARA, is proposed to obtain an optimized network whose prevalence is close to the benchmark. The output of the algorithm is applied to classify the network types.
Original languageEnglish
Article number93
Pages (from-to)1-13
Number of pages13
JournalApplied Network Science
Volume4
Issue number1
DOIs
Publication statusPublished - 2019

Keywords

  • OA-Fund TU Delft

Fingerprint

Dive into the research topics of 'Inferring network properties based on the epidemic prevalence'. Together they form a unique fingerprint.

Cite this