Influence of fiber orientation on the mechanical responses of engineering cementitious composite (ECC) under various loading conditions

Abdullah M. Tawfek, Zhi Ge, Huaqiang Yuan, Ning Zhang, Hongzhi Zhang, Yifeng Ling, Yanhua Guan, B. Šavija

Research output: Contribution to journalArticleScientificpeer-review

28 Downloads (Pure)

Abstract

The mechanical performance of engineered cementitious composite (ECC) depends greatly on fiber orientation and distribution. In this paper, the effect of fiber orientation on ECC's mechanical properties was investigated using two different casting methods: a flow-induced casting was used to enhance the fiber orientation within ECC mixture and compared with the conventional casting. The fiber orientation was quantified using scanning electron microscope (SEM) and image processing. Mechanical tests on the specimens with various fiber orientations were performed. The failure processes of ECC specimens under compression and tensile tests were analyzed using digital image correlation (DIC) technique. The proposed flow-induced casting enhanced the fiber alignment in the flow direction. Consequently, ECC's mechanical properties were significantly improved with more finer cracks under uniaxial loading. In conclusion, the proposed flow-induced casting can be adopted as an effective approach to improve fiber bridging efficiency in ECC.
Original languageEnglish
Number of pages22
JournalJournal of Building Engineering
Volume63
Issue numberB
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Engineering cementitious composite
  • Fiber orientation
  • Mechanical behavior
  • Digital image correlation
  • Crack width

Fingerprint

Dive into the research topics of 'Influence of fiber orientation on the mechanical responses of engineering cementitious composite (ECC) under various loading conditions'. Together they form a unique fingerprint.

Cite this