Influence of printing direction on 3D-printed vascular based self-healing cementitious composites

Zhi Wan*, Yading Xu, Branko Šavija

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeEntry for encyclopedia/dictionaryScientificpeer-review

27 Downloads (Pure)

Abstract

Compared with other self-healing mechanisms, embedding vascular networks in cementitious matrix enables repairing wider cracks and performing multiple healing cycles. For vascular-based self-healing cementitious composites, additive manufacturing (AM) allows fabricating vascular structures with complex geometry. For Fused Filament Fabrication (FFF), printing direction has great influences on the properties of the 3D-printed vascular network. To timely release the healing agent when cracks occur, selecting the proper printing direction for the vascular network in self-healing concretes is necessary. In this work, two commercial printing filaments, i.e., polylactic acid (PLA) and polyvinyl alcohol (PVA), are used to create the vascular structures. The influence of printing direction on the dissolution of 3D-printed PVA structure is investigated. Besides, the flexural strength and water tightness of samples with PLA vascular printed in different printing directions are compared. After the 4-point bending tests, epoxy resin is manually injected into the vascular networks to seal the cracks. It is found that the strength recovery and the permeability of the cracked specimens are influenced by the printing direction due to the different crack closure after unloading.
Original languageEnglish
Title of host publicationMATEC web of conferences
Subtitle of host publicationSMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
PublisherEDP Sciences
Number of pages6
Volume378
DOIs
Publication statusPublished - 2023
EventSMARTINCS’23: Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems - Het Pand, 3P39+5X, Ghent, Belgium
Duration: 22 May 202323 May 2023
https://smartincs.ugent.be/index.php/smartincs-23

Publication series

NameMATEC web of conferences
PublisherEDP Sciences
ISSN (Electronic)2261-236X

Conference

ConferenceSMARTINCS’23
Country/TerritoryBelgium
CityGhent
Period22/05/2323/05/23
Internet address

Fingerprint

Dive into the research topics of 'Influence of printing direction on 3D-printed vascular based self-healing cementitious composites'. Together they form a unique fingerprint.

Cite this