Influence of turbulence anisotropy on RANS predictions of wind-turbine wakes

Yuyang Luan, Richard P. Dwight

Research output: Contribution to journalConference articleScientificpeer-review

5 Downloads (Pure)

Abstract

Simulating wind-turbines in Reynolds-averaged Navier-Stokes (RANS) codes is highly challenging, at least partly due to the importance of turbulence anisotropy in the evolution of the wake. We present a preliminary investigation into the role of anisotropy in RANS simulations of vertical-axis turbines, by comparison with LES. Firstly an LES data-set serving as our ground-truth is generated, and verified against previously published works. This data-set provides raw turbulence anisotropy fields for several turbine configurations. This anisotropy is injected into RANS simulations of identical configurations to determine the extent to which it influences (i) the production of turbulence kinetic energy, (ii) the turbulence momentum forcing, and finally (iii) the mean-flow. In all these quantities we observe the anisotropy has a surprisingly limited effect, and is certainly not the leading-order error in Boussinesq RANS for these cases. Nevertheless we go on to show that it is feasible to predict anisotropy fields for unseen configurations based only on the mean-flow, by using a tensorized version of random-forest regression.

Original languageEnglish
Article number062059
Number of pages10
JournalJournal of Physics: Conference Series
Volume1618
Issue number6
DOIs
Publication statusPublished - 22 Sep 2020
EventScience of Making Torque from Wind 2020, TORQUE 2020 - Online, Virtual, Online, Netherlands
Duration: 28 Sep 20202 Oct 2020

Fingerprint Dive into the research topics of 'Influence of turbulence anisotropy on RANS predictions of wind-turbine wakes'. Together they form a unique fingerprint.

Cite this