Information Diffusion Prediction via Cascade-Retrieved In-context Learning

Ting Zhong, Jienan Zhang, Zhangtao Cheng*, Fan Zhou, Xueqin Chen

*Corresponding author for this work

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Information diffusion prediction, which aims to infer the infected behavior of individual users during information spread, is critical for understanding the dynamics of information propagation and users' influence on online social media. To date, existing methods either focus on capturing limited contextual information from a single cascade, overlooking the potentially complex dependencies across different cascades, or they are committed to improving model performance by using intricate technologies to extract additional features as supplements to user representations, neglecting the drift of model performance across different platforms. To address these limitations, we propose a novel framework called CARE (CAscade-REtrieved In-Context Learning) inspired by the concept of in-context learning in LLMs. Specifically, CARE first constructs a prompts pool derived from historical cascades, then utilizes ranking-based search engine techniques to retrieve prompts with similar patterns based on the query. Moreover, CARE also introduces two augmentation strategies alongside social relationship enhancement to enrich the input context. Finally, the transformed query-cascade representation from a GPT-type architecture is projected to obtain the prediction. Experiments on real-world datasets from various platforms show that CARE outperforms state-of-the-art baselines in terms of effectiveness and robustness in information diffusion prediction.

Original languageEnglish
Title of host publicationSIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery (ACM)
Pages2472-2476
Number of pages5
ISBN (Electronic)9798400704314
DOIs
Publication statusPublished - 2024
Event47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 - Washington, United States
Duration: 14 Jul 202418 Jul 2024

Conference

Conference47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
Country/TerritoryUnited States
CityWashington
Period14/07/2418/07/24

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • cascade retrieved
  • in-context learning
  • information diffusion prediction

Fingerprint

Dive into the research topics of 'Information Diffusion Prediction via Cascade-Retrieved In-context Learning'. Together they form a unique fingerprint.

Cite this