TY - JOUR
T1 - Integrated optical-readout of a high-Q mechanical out-of-plane mode
AU - Guo, Jingkun
AU - Gröblacher, Simon
PY - 2022
Y1 - 2022
N2 - The rapid development of high-QM macroscopic mechanical resonators has enabled great advances in optomechanics. Further improvements could allow for quantum-limited or quantum-enhanced applications at ambient temperature. Some of the remaining challenges include the integration of high-QM structures on a chip, while simultaneously achieving large coupling strengths through an optical read-out. Here, we present a versatile fabrication method, which allows us to build fully integrated optomechanical structures. We place a photonic crystal cavity directly above a mechanical resonator with high-QM fundamental out-of-plane mode, separated by a small gap. The highly confined optical field has a large overlap with the mechanical mode, enabling strong optomechanical interaction strengths. Furthermore, we implement a novel photonic crystal design, which allows for a very large cavity photon number, a highly important feature for optomechanical experiments and sensor applications. Our versatile approach is not limited to our particular design but allows for integrating an out-of-plane optical read-out into almost any device layout. Additionally, it can be scaled to large arrays and paves the way to realizing quantum experiments and applications with mechanical resonators based on high-QM out-of-plane modes alike.
AB - The rapid development of high-QM macroscopic mechanical resonators has enabled great advances in optomechanics. Further improvements could allow for quantum-limited or quantum-enhanced applications at ambient temperature. Some of the remaining challenges include the integration of high-QM structures on a chip, while simultaneously achieving large coupling strengths through an optical read-out. Here, we present a versatile fabrication method, which allows us to build fully integrated optomechanical structures. We place a photonic crystal cavity directly above a mechanical resonator with high-QM fundamental out-of-plane mode, separated by a small gap. The highly confined optical field has a large overlap with the mechanical mode, enabling strong optomechanical interaction strengths. Furthermore, we implement a novel photonic crystal design, which allows for a very large cavity photon number, a highly important feature for optomechanical experiments and sensor applications. Our versatile approach is not limited to our particular design but allows for integrating an out-of-plane optical read-out into almost any device layout. Additionally, it can be scaled to large arrays and paves the way to realizing quantum experiments and applications with mechanical resonators based on high-QM out-of-plane modes alike.
UR - http://www.scopus.com/inward/record.url?scp=85139238887&partnerID=8YFLogxK
U2 - 10.1038/s41377-022-00966-7
DO - 10.1038/s41377-022-00966-7
M3 - Article
AN - SCOPUS:85139238887
SN - 2095-5545
VL - 11
JO - Light: Science and Applications
JF - Light: Science and Applications
IS - 1
M1 - 282
ER -