TY - JOUR
T1 - Inter-compartment interaction in multi-impeller mixing
T2 - Part II. Experiments, sliding mesh and large Eddy simulations
AU - Haringa, Cees
AU - Vandewijer, Ruben
AU - Mudde, Robert F.
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2018
Y1 - 2018
N2 - Steady state multiple reference frame-RANS (MRF-RANS) simulations frequently show strong over-predictions of the mixing time in single-phase, multi-impeller mixing tanks, which is sometimes patched by ad hoc tuning of the turbulent Schmidt-number. In Part I of this work, we experimentally revealed the presence of macro-instabilities in the region between the impellers, as well as a peak in the turbulent kinetic energy in the region where the flow from the individual impellers converges. The MRF-RANS method was found unable to capture both. In this second paper, we show that the sliding-mesh RANS (SM-RANS) approach does capture the effect of macro-instabilities, while still underestimating the turbulent kinetic energy. Consequently, the SM-RANS method mildly over-estimates the mixing time, while being less sensitive to the exact mesh geometry. Large eddy simulations with the dynamic Smagorinsky model reasonably capture the kinetic energy contained in macro-instabilities, and properly assess the turbulent kinetic energy in the region between the impellers, even for crude meshes. Consequently, the mixing time is reasonably assessed, and even under-predicted at the crudest meshes. However, the turbulent kinetic energy and energy dissipation in the impeller discharge stream are poorly assessed by the dynamic Smagorinsky model.
AB - Steady state multiple reference frame-RANS (MRF-RANS) simulations frequently show strong over-predictions of the mixing time in single-phase, multi-impeller mixing tanks, which is sometimes patched by ad hoc tuning of the turbulent Schmidt-number. In Part I of this work, we experimentally revealed the presence of macro-instabilities in the region between the impellers, as well as a peak in the turbulent kinetic energy in the region where the flow from the individual impellers converges. The MRF-RANS method was found unable to capture both. In this second paper, we show that the sliding-mesh RANS (SM-RANS) approach does capture the effect of macro-instabilities, while still underestimating the turbulent kinetic energy. Consequently, the SM-RANS method mildly over-estimates the mixing time, while being less sensitive to the exact mesh geometry. Large eddy simulations with the dynamic Smagorinsky model reasonably capture the kinetic energy contained in macro-instabilities, and properly assess the turbulent kinetic energy in the region between the impellers, even for crude meshes. Consequently, the mixing time is reasonably assessed, and even under-predicted at the crudest meshes. However, the turbulent kinetic energy and energy dissipation in the impeller discharge stream are poorly assessed by the dynamic Smagorinsky model.
KW - CFD
KW - Mixing
KW - Multiple impellers
KW - Rushton
KW - Schmidt number
UR - http://www.scopus.com/inward/record.url?scp=85049071079&partnerID=8YFLogxK
U2 - 10.1016/j.cherd.2018.06.007
DO - 10.1016/j.cherd.2018.06.007
M3 - Article
AN - SCOPUS:85049071079
VL - 136
SP - 886
EP - 899
JO - Chemical Engineering Research & Design
JF - Chemical Engineering Research & Design
SN - 0263-8762
ER -