TY - JOUR
T1 - Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization
AU - Lechtman, Eli
AU - Pignol, Jean Philippe
PY - 2017
Y1 - 2017
N2 - There are large variations in the reported efficiency of gold nanoparticle (GNP) radiosensitization. We have previously reported on a predictive model, which accounts for the detailed Auger and photoelectron tracks to calculate the cell survival probability. After validating our model using PC-3 cells incubated with 2 mg/ml of 30 nm GNPs and irradiated with 100 kVp or 300 kVp beams, we evaluated the interplay between photon energy, GNP size (1.9 and 100 nm) and sub-cellular localization. Experiments were in excellent agreement with the model. In predictive modeling, using a 100 kVp source and 1.9 nm nanoparticles, GNP localization had a significant impact on cell survival. A sensitizer enhancement ratio of 1.34 was achieved when GNPs were localized outside the cells, increasing to 2.56 when GNPs were also distributed in the cytoplasm and nucleus. Using a 300 kVp source, which emits photons mainly above the gold K-edge, the dependence on GNP localization and size was barely detectable, since long ranged electrons dominate the energy deposition. In summary, achieving intracellular uptake with targeted-GNPs can significantly enhance radiosensitization for photon energies below the gold K-edge, where Auger electrons contribute significantly to the local energy deposition. For higher energies, this is much less important.
AB - There are large variations in the reported efficiency of gold nanoparticle (GNP) radiosensitization. We have previously reported on a predictive model, which accounts for the detailed Auger and photoelectron tracks to calculate the cell survival probability. After validating our model using PC-3 cells incubated with 2 mg/ml of 30 nm GNPs and irradiated with 100 kVp or 300 kVp beams, we evaluated the interplay between photon energy, GNP size (1.9 and 100 nm) and sub-cellular localization. Experiments were in excellent agreement with the model. In predictive modeling, using a 100 kVp source and 1.9 nm nanoparticles, GNP localization had a significant impact on cell survival. A sensitizer enhancement ratio of 1.34 was achieved when GNPs were localized outside the cells, increasing to 2.56 when GNPs were also distributed in the cytoplasm and nucleus. Using a 300 kVp source, which emits photons mainly above the gold K-edge, the dependence on GNP localization and size was barely detectable, since long ranged electrons dominate the energy deposition. In summary, achieving intracellular uptake with targeted-GNPs can significantly enhance radiosensitization for photon energies below the gold K-edge, where Auger electrons contribute significantly to the local energy deposition. For higher energies, this is much less important.
UR - http://resolver.tudelft.nl/uuid:c55f0f31-cd78-47f5-906e-31d6351f10c9
UR - http://www.scopus.com/inward/record.url?scp=85031780356&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-13736-y
DO - 10.1038/s41598-017-13736-y
M3 - Article
AN - SCOPUS:85031780356
VL - 7
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 13268
ER -