Intertidal Area Disappears Under Sea Level Rise: 250 Years of Morphodynamic Modeling in San Pablo Bay, California

H. Elmilady*, M. van der Wegen, D. Roelvink, B. E. Jaffe

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

16 Citations (Scopus)
101 Downloads (Pure)

Abstract

Anticipated sea level rise (SLR) threatens intertidal areas and associated ecosystems in estuaries worldwide. There is a need to develop validated modeling tools to assess the impact of SLR on estuarine morphodynamics. This study explores the morphological impact of SLR on a channel-shoal system in San Pablo Bay, a subembayment of San Francisco Bay, California, using a 3-D, process-based modeling approach (Delft3D) including density currents and wave action. The Bay underwent considerable morphologic development in response to variations in fluvial sediment load and discharge associated with a period of hydraulic mining for gold and later damming in the watershed. The availability of a unique 150-year, 30-year sequenced, bathymetric data set provided a rare opportunity for model validation. We investigate a 250-year period of morphodynamic evolution including a 150-year hindcast and a 100-year forecast with different SLR scenarios. The model shows significant skill in hindcasting volumes and patterns of bathymetric development during both net depositional (1856–1951) and erosional (1951–onward) periods. Forecasts show that SLR alters the Bay's erosional trend to a depositional trend again. Despite increased sediment trapping rates, the intertidal mudflats drown under all modeled SLR scenarios (42, 84, and 167 cm by end of the 21st century). Our work highlights the potential of using process-based models to assess the morphodynamic impact of SLR. The study also suggests that SLR can greatly increase the loss of intertidal area when landward migration is not possible. Sustainable management strategies are required to safeguard these valuable intertidal habitats.

Original languageEnglish
Pages (from-to)38-59
Number of pages22
JournalJournal of Geophysical Research: Earth Surface
Volume124
Issue number1
DOIs
Publication statusPublished - 2019

Keywords

  • Delft3D
  • Estuary
  • Intertidal mudflats
  • Long-term Morphodynamics
  • San Francisco Bay
  • Sea-level rise

Fingerprint

Dive into the research topics of 'Intertidal Area Disappears Under Sea Level Rise: 250 Years of Morphodynamic Modeling in San Pablo Bay, California'. Together they form a unique fingerprint.

Cite this