Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell

Fuhua Hou, Can Han, Olindo Isabella, Lingling Yan, Biao Shi, Junfan Chen, Sichong An, Miro Zeman, More Authors

Research output: Contribution to journalArticleScientificpeer-review

40 Citations (Scopus)
15 Downloads (Pure)

Abstract

Perovskite/silicon tandem solar cells (TSCs) have the potential to achieve power conversion efficiency exceeding 30%. To be compatible with high-efficiency solution-deposited perovskite top cell, a planar front surface for silicon bottom cell is generally required. However, flat front surfaces result in large light reflection losses and thus reduce the performance of tandem device. To boost light absorption, we design light management antireflective foils made from polydimethylsiloxane (PDMS) polymer carrying random-pyramidal textures with three different pyramid size ranges (1–3 µm, 3–8 µm, 8–15 µm). The optical properties, together with the reflection behavior applied to perovskite/silicon tandem solar cells have been systematically studied. One of the PDMS layer exhibited a relatively strong light-scattering property with a high average haze ratio originated from synergistic effect of the appropriate pyramid size and the uneven random pyramid distribution. Consequently, the short-circuit current density of the tandem device was improved by 1.72 mA/cm2 and thus its efficiency increased from 19.38% to 21.93%, after laminating the PDMS-based antireflection coating (ARC) onto the front surface of tandem device. Furthermore, this work provides a facile and cost-effective way to introduce light-management foils and indicates a broad strategy to enhance the performance of solar cells with planar front surface.

Original languageEnglish
Pages (from-to)234-240
Number of pages7
JournalNano Energy
Volume56
DOIs
Publication statusPublished - 2019

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Antireflection coating
  • Light management
  • PDMS layer
  • Perovskite/silicon tandem solar cell
  • Pyramidal texture

Fingerprint

Dive into the research topics of 'Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell'. Together they form a unique fingerprint.

Cite this