Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle

Maxwell Brunhart, Celia Soteriou, Manolis Gavaises, Ioannis Karathanassis, Phoevos Koukouvinis, S. Jahangir, C. Poelma

Research output: Contribution to journalArticleScientificpeer-review

15 Downloads (Pure)

Abstract

Cavitating flow dynamics are investigated in an axisymmetric converging–diverging Venturi nozzle. Computational Fluid Dynamics (CFD) results are compared with those from previous experiments. New analysis performed on the quantitative results from both datasets reveals a coherent trend and shows that the simulations and experiments agree well. The CFD results have confirmed the interpretation of the high-speed images of the Venturi flow, which indicated that there are two vapor shedding mechanisms that exist under different running conditions: re-entrant jet and condensation shock. Moreover, they provide further details of the flow mechanisms that cannot be extracted from the experiments. For the first time with this cavitating Venturi nozzle, the re-entrant jet shedding mechanism is reliably achieved in CFD simulations. The condensation shock shedding mechanism is also confirmed, and details of the process are presented. These CFD results compare well with the experimental shadowgraphs, space–time plots, and time-averaged reconstructed computed tomography slices of vapor fraction.
Original languageEnglish
Article number083306
Number of pages13
JournalPhysics of Fluids
Volume32
Issue number8
DOIs
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle'. Together they form a unique fingerprint.

  • Cite this

    Brunhart, M., Soteriou, C., Gavaises, M., Karathanassis, I., Koukouvinis, P., Jahangir, S., & Poelma, C. (2020). Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle. Physics of Fluids, 32(8), [083306]. https://doi.org/10.1063/5.0015487