Investigation of temperature dynamics in small and shallow reservoirs, case study: Lake Binaba, Upper East Region of Ghana

Ali Abbasi*, Frank Ohene Annor, Nick van de Giesen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

24 Citations (Scopus)
88 Downloads (Pure)

Abstract

An unsteady fully three-dimensional model of Lake Binaba (a shallow small reservoir) in semi-arid Upper East Region of Ghana has been developed to simulate its temperature dynamics. The model developed is built on the Reynolds Averaged Navier-Stokes (RANS) equations, utilizing the Boussinesq approach. As the results of the model are significantly affected by the physical conditions on the boundaries, allocating appropriate boundary conditions, particularly over a water surface, is essential in simulating the lake's thermal structure. The thermal effects of incoming short-wave radiation implemented as a heat source term in the temperature equation, while the heat fluxes at the free water surface, which depend on wind speed, air temperature, and atmospheric stability conditions are considered as temperature boundary condition. The model equations were solved using OpenFOAM CFD toolbox. As the flow is completely turbulent, which is affected by the complex boundary conditions, a new heat transfer solver and turbulence model were developed to investigate the spatial and temporal distribution of temperature in small and shallow inland water bodies using improved time-dependent boundary conditions. The computed temperature values were compared with four days of observed field data. Simulated and observed temperature profiles show reasonable agreement where the root mean square error (RMSE) over the simulation period ranges from 0.11 to 0.44 °C in temporal temperature profiles with an average value of 0.33 °C. Results indicate that the model is able to simulate the flow variables and the temperature distribution in small inland water bodies with complex bathymetry.

Original languageEnglish
Article number84
JournalWater
Volume8
Issue number3
DOIs
Publication statusPublished - 1 Mar 2016

Keywords

  • Heat transfer
  • OpenFOAM
  • RANS
  • Semi-arid region
  • Small water body
  • Temperature dynamics
  • Turbulence
  • OA-Fund TU Delft

Fingerprint

Dive into the research topics of 'Investigation of temperature dynamics in small and shallow reservoirs, case study: Lake Binaba, Upper East Region of Ghana'. Together they form a unique fingerprint.

Cite this