Abstract
The jamming transition of soft particles characterized by narrow size distributions has been well studied by physicists. However, polydispersed systems are more relevant to engineering, and the influence of polydispersity on jamming phenomena is still unexplored. Here, we numerically investigate jamming transitions of polydispersed soft particles in two dimensions. We find that polydispersity strongly influences contact forces, local coordination, and the jamming transition density. In contrast, the critical scaling of pressure and elastic moduli is not affected by the particle size distribution. Consistent with this observation, we find that the vibrational density of states is also insensitive to the polydispersity. Our results suggest that, regardless of particle size distributions, both mechanical and vibrational properties of soft particle packings near jamming are governed by the distance to jamming.
Original language | English |
---|---|
Pages (from-to) | 1263-1268 |
Number of pages | 6 |
Journal | Soft Matter |
Volume | 21 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.