Abstract
Recent years, the sintered silver paste was introduced and further developed for power electronics packaging due to low processing temperature and high working temperature. The pressure-less sintering technology reduces the stress damage caused by the pressure to the chip, improves reliability, and is widely applied in manufacturing. Currently, most existed studies are focused on alcohol-based sintered silver pastes while resins have been demonstrated to improve the bonding properties of solder joints. Hence, the performance and sintering mechanisms with epoxy-based silver paste need to be further explored. In this work, a methodology for multifactor investigation is settled on the epoxy-based silver paste to reveal the relationship between the strength and the different influence factors. We first analyzed the characteristics of commercialized epoxy-based silver paste samples, including silver content, silver particle size, organic composition, sample viscosity, and thermal conductivity. Samples were then prepared for shear tests and microstructure analysis under different pressure-less sintering temperatures, holding time, substrate surface, and chip size. Full factor analysis results were further discussed in detail for correlation. The influence factors were ranked from strong to weak as follows: sintering temperature, substrate surface, chip size, and holding time. Finally, a thermal cycling test was carried out for reliability analysis. Epoxy residues are one of the possible reasons, which result in shear strength decreasing exponentially.
Original language | English |
---|---|
Article number | 041013 |
Journal | Journal of Electronic Packaging, Transactions of the ASME |
Volume | 144 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- epoxy-based nano silver paste
- low-temperature joint technology
- power electronic packaging
- pressure-less sintering