Kirkwood–Buff integrals of finite systems: Shape effects

Noura Dawass, Peter Krüger, Jean Marc Simon, Thijs J.H. Vlugt

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
16 Downloads (Pure)

Abstract

The Kirkwood–Buff (KB) theory provides an important connection between microscopic density fluctuations in liquids and macroscopic properties. Recently, Krüger et al. derived equations for KB integrals for finite subvolumes embedded in a reservoir. Using molecular simulation of finite systems, KB integrals can be computed either from density fluctuations inside such subvolumes, or from integrals of radial distribution functions (RDFs). Here, based on the second approach, we establish a framework to compute KB integrals for subvolumes with arbitrary convex shapes. This requires a geometric function w(x) which depends on the shape of the subvolume, and the relative position inside the subvolume. We present a numerical method to compute w(x) based on Umbrella Sampling Monte Carlo (MC). We compute KB integrals of a liquid with a model RDF for subvolumes with different shapes. KB integrals approach the thermodynamic limit in the same way: for sufficiently large volumes, KB integrals are a linear function of area over volume, which is independent of the shape of the subvolume.

Original languageEnglish
Pages (from-to)1573-1580
JournalMolecular Physics: an international journal at the interface between chemistry and physics
Volume116
Issue number12
DOIs
Publication statusPublished - 2018

Keywords

  • Kirkwood–Buff integrals
  • small-systems thermodynamics

Fingerprint Dive into the research topics of 'Kirkwood–Buff integrals of finite systems: Shape effects'. Together they form a unique fingerprint.

  • Datasets

    Kirkwood–Buff integrals of finite systems: geometric functions w(x)

    Vlugt, T. J. H. (Creator), Dawass, N. A. A. (Creator), Krüger, P. (Contributor) & Simon, J. M. (Contributor), TU Delft - 4TU Centre for research data, 2018

    Dataset

    Cite this