Laboratory study of the wave-induced mean flow and set-down in unidirectional surface gravity wave packets on finite water depth

R. Calvert, C. Whittaker, A. Raby, P.H. Taylor, A. G.L. Borthwick, T. S. Van Den Bremer

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)

Abstract

The net movement of Lagrangian particles under water waves comprises a Stokes drift in the direction of wave propagation and an Eulerian return flow in the opposing direction. Accurate prediction of the Eulerian return flow in the ocean is of importance in modeling the transport of plastic pollution, oil, wreckage, and sediment. Herein, we derive a multiple-scales solution for the Eulerian mean flow under wave packets that is valid for all water depths, relative to both the length of the wave and the length of the wave packet. To validate this solution, we carry out particle tracking velocimetry experiments in a long flume to extract the mean motion from Lagrangian seeding particles under wave packets, finding good agreement. The extraction technique is able to deal with small background motion and subharmonic error waves associated with wave generation by the paddle, the latter being relatively large in finite-depth flume experiments. In finite depth, the return flow is forced by both the divergence of the Stokes transport on the wave-packet scale and the formation of a non-negligible mean set-down underneath the packet, which acts like a bounding streamtube in the form of a convergent-divergent duct. The magnitude of the horizontal return flow is thus enhanced, with particular relevance to transport in the finite-depth coastal environment.

Original languageEnglish
Article number114801
JournalPhysical Review Fluids
Volume4
Issue number11
DOIs
Publication statusPublished - 22 Nov 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Laboratory study of the wave-induced mean flow and set-down in unidirectional surface gravity wave packets on finite water depth'. Together they form a unique fingerprint.

Cite this