TY - GEN
T1 - Leading edge erosion of wind turbine blades
T2 - ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2020
AU - Verma, Amrit Shankar
AU - Jiang, Zhiyu
AU - Ren, Zhengru
AU - Teuwen, Julie J.E.
PY - 2020
Y1 - 2020
N2 - Leading edge erosion (LEE) of a wind turbine blade (WTB) is a complex phenomenon that contributes to high operation and maintenance costs. The impact between rain droplets and rotating blades exerts cyclic fatigue stresses on the leading edge - causing progressive material loss and reduced aerodynamic performance. One of the most important parameters for erosion modelling and damage prediction is the relative impact velocity between rain droplets and rotating blade and depends upon the environmental conditions. The environmental condition, in general, could vary for onshore and offshore wind turbines (OWTs) - for instance, the presence of wave-induced loads along with less turbulent wind and varying rainfall conditions in the offshore environment. The present paper tries to provide guidelines whether all these parameters need to be included for LEE modelling. Aero-hydro-servo-elastic simulations are carried out for a rotating blade based on the NREL 5 MW turbine by considering realistic environmental conditions for a land-based wind turbine and monopile-supported OWT. Further, the impact velocities and erosion damage rate, evaluated using a surface fatigue model, are analysed and compared for different environmental conditions. It is found that rainfall intensity and turbulence intensity influences the impact velocity minorly, however, has a substantial effect on the overall erosion damage rate. For instance, for the investigated load cases, an 8% increase in the impact velocity is observed when the turbulence intensity increases from 6% to 26%, which indicates an increase of erosion damage rate by more than 40%. Furthermore, no substantial influence is found due to the effects of wave-induced loads on the wind turbine.
AB - Leading edge erosion (LEE) of a wind turbine blade (WTB) is a complex phenomenon that contributes to high operation and maintenance costs. The impact between rain droplets and rotating blades exerts cyclic fatigue stresses on the leading edge - causing progressive material loss and reduced aerodynamic performance. One of the most important parameters for erosion modelling and damage prediction is the relative impact velocity between rain droplets and rotating blade and depends upon the environmental conditions. The environmental condition, in general, could vary for onshore and offshore wind turbines (OWTs) - for instance, the presence of wave-induced loads along with less turbulent wind and varying rainfall conditions in the offshore environment. The present paper tries to provide guidelines whether all these parameters need to be included for LEE modelling. Aero-hydro-servo-elastic simulations are carried out for a rotating blade based on the NREL 5 MW turbine by considering realistic environmental conditions for a land-based wind turbine and monopile-supported OWT. Further, the impact velocities and erosion damage rate, evaluated using a surface fatigue model, are analysed and compared for different environmental conditions. It is found that rainfall intensity and turbulence intensity influences the impact velocity minorly, however, has a substantial effect on the overall erosion damage rate. For instance, for the investigated load cases, an 8% increase in the impact velocity is observed when the turbulence intensity increases from 6% to 26%, which indicates an increase of erosion damage rate by more than 40%. Furthermore, no substantial influence is found due to the effects of wave-induced loads on the wind turbine.
UR - http://www.scopus.com/inward/record.url?scp=85099385333&partnerID=8YFLogxK
U2 - 10.1115/OMAE2020-18173
DO - 10.1115/OMAE2020-18173
M3 - Conference contribution
AN - SCOPUS:85099385333
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Ocean Renewable Energy
PB - The American Society of Mechanical Engineers (ASME)
Y2 - 3 August 2020 through 7 August 2020
ER -