Abstract
Tracking performance of physical-model-based feedforward control for interventional X-ray systems is limited by hard-to-model parasitic nonlinear dynamics, such as cable forces and nonlinear friction. In this paper, these nonlinear dynamics are compensated using a physics-guided neural network (PGNN), consisting of a physical model, embedding prior knowledge of the dynamics, in parallel with a neural network to learn hard-to-model dynamics. To ensure that the neural network learns only unmodelled effects, the neural network output in the subspace spanned by the physical model is regularized via an orthogonal projection-based approach, resulting in complementary physical model and neural network contributions. The PGNN feedforward controller reduces the tracking error of an interventional X-ray system by a factor of 5 compared to an optimally tuned physical model, successfully compensating the unmodeled parasitic dynamics.
Original language | English |
---|---|
Pages (from-to) | 7523-7528 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 56 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2023 |
Event | 22nd IFAC World Congress - Yokohama, Japan Duration: 9 Jul 2023 → 14 Jul 2023 |
Keywords
- Feedforward control
- interventional X-ray
- physics-guided neural networks