Abstract
In this paper, we specifically focus on high-dimensional data sets for which the number of dimensions is an order of magnitude higher than the number of objects. From a classifier design standpoint, such small sample size problems have some interesting challenges. The first challenge is to find, from all hyperplanes that separate the classes, a separating hyperplane which generalizes well for future data. A second important task is to determine which features are required to distinguish the classes. To attack these problems, we propose the LESS (Lowest Error in a Sparse Subspace) classifier that efficiently finds linear discriminants in a sparse subspace. In contrast with most classifiers for high-dimensional data sets, the LESS classifier incorporates a (simple) data model. Further, by means of a regularization parameter, the classifier establishes a suitable trade-off between subspace sparseness and classification accuracy. In the experiments, we show how LESS performs on several high-dimensional data sets and compare its performance to related state-of-the-art classifiers like, among others, linear ridge regression with the LASSO and the Support Vector Machine. It turns out that LESS performs competitively while using fewer dimensions.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 1496-1500 |
Number of pages | 5 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 27 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2005 |
Bibliographical note
50/50 iss01 en iss06Keywords
- academic journal papers
- ZX CWTS 1.00 <= JFIS < 3.00