Linear Parameter Varying Pitch Autopilot Design for a Class of Long Range Guided Projectiles

Gian Marco Vinco, S.T. Theodoulis, Olivier Sename, Guillaume Strub

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

63 Downloads (Pure)

Abstract

Promising results on LPV design have been recently proposed, concerning the modeling and control of missiles, rockets, and aircraft. However, very few investigations have been focused on the development of guided projectile applications. This paper presents a pure linear parameter varying (LPV) modeling and control design approach intended to improve the range capability of a new class of Long Range Guided Projectiles (LRGP). The investigated concept consists of an asymmetric 155 mm fin-stabilized projectile equipped with a reduced amount of control actuators and characterized by a predominant unstable behavior across the analyzed flight envelope. The main advantages of the LPV design in terms of guaranteed robustness and stability are compared to standard gain-scheduling-based linear time-invariant (LTI) control strategies. A nonlinear simulation scenario is performed in order to assess the reliability of a pure LPV autopilot design, based on the polytopic formulation, across the entire flight envelope, over a local modal control design related to a specific set of flight conditions.
Original languageEnglish
Title of host publicationAIAA SciTech Forum 2023
Number of pages17
ISBN (Electronic)978-1-62410-699-6
DOIs
Publication statusPublished - 2023
EventAIAA SCITECH 2023 Forum - National Harbor, MD & Online, Washington, United States
Duration: 23 Jan 202327 Jan 2023
https://arc-aiaa-org.tudelft.idm.oclc.org/doi/book/10.2514/MSCITECH23

Conference

ConferenceAIAA SCITECH 2023 Forum
Country/TerritoryUnited States
CityWashington
Period23/01/2327/01/23
Internet address

Fingerprint

Dive into the research topics of 'Linear Parameter Varying Pitch Autopilot Design for a Class of Long Range Guided Projectiles'. Together they form a unique fingerprint.

Cite this