Locally Condensed Water as a Solution for In Situ Wet Corrosion Electron Microscopy

Majid Ahmadi, Frans D. Tichelaar, Andreas Ihring, Michael Kunze, Sophie Billat, Zahra Kolahdouz Esfahani, Henny W. Zandbergen

Research output: Contribution to journalArticleScientificpeer-review

Abstract

In microstructural corrosion studies, knowledge on the initiation of corrosion on an nm-scale is lacking. In situ transmission electron microscope (TEM) studies can elucidate where/how the corrosion starts, provided that the proper corrosive conditions are present during the investigation. In wet corrosion studies with liquid cell nanoreactors (NRs), the liquid along the electron beam direction leads to strong scattering and therefore image blurring. Thus, a quick liquid removal or thickness control of the liquid layer is preferred. This can be done by the use of a Peltier element embedded in an NR. As a prelude to such in situ work, we demonstrate the local wetting of a TEM sample, by creating a temperature decrease of 10 ± 2°C on the membrane of an NR with planar Sb/BiSb thermoelectric materials for the Peltier element. TEM samples were prepared and loaded in an NR using a dual-beam focused ion beam scanning electron microscope. A mixture of water vapor and carrier gas was passed through a chamber, which holds the micro-electromechanical system Peltier device and resulted in quick formation of a water layer/droplets on the sample. The TEM analysis after repeated corrosion of the same sample (ex situ studies) shows the onset and progression of O2 and H2S corrosion of the AA2024-T3 alloy and cold-rolled HCT980X steel lamellae.

Keywords

  • Corrosion
  • In situ electron microscopy
  • Peltier device
  • Thermoelectric (TEC) device

Fingerprint Dive into the research topics of 'Locally Condensed Water as a Solution for In Situ Wet Corrosion Electron Microscopy'. Together they form a unique fingerprint.

Cite this