TY - JOUR
T1 - Locally-Verifiable Sufficient Conditions for Exactness of the Hierarchical B-spline Discrete de Rham Complex in Rn
AU - Shepherd, Kendrick
AU - Toshniwal, Deepesh
PY - 2024
Y1 - 2024
N2 - Given a domain Ω⊂Rn, the de Rham complex of differential forms arises naturally in the study of problems in electromagnetism and fluid mechanics defined on Ω, and its discretization helps build stable numerical methods for such problems. For constructing such stable methods, one critical requirement is ensuring that the discrete subcomplex is cohomologically equivalent to the continuous complex. When Ω is a hypercube, we thus require that the discrete subcomplex be exact. Focusing on such Ω, we theoretically analyze the discrete de Rham complex built from hierarchical B-spline differential forms, i.e., the discrete differential forms are smooth splines and support adaptive refinements—these properties are key to enabling accurate and efficient numerical simulations. We provide locally-verifiable sufficient conditions that ensure that the discrete spline complex is exact. Numerical tests are presented to support the theoretical results, and the examples discussed include complexes that satisfy our prescribed conditions as well as those that violate them.
AB - Given a domain Ω⊂Rn, the de Rham complex of differential forms arises naturally in the study of problems in electromagnetism and fluid mechanics defined on Ω, and its discretization helps build stable numerical methods for such problems. For constructing such stable methods, one critical requirement is ensuring that the discrete subcomplex is cohomologically equivalent to the continuous complex. When Ω is a hypercube, we thus require that the discrete subcomplex be exact. Focusing on such Ω, we theoretically analyze the discrete de Rham complex built from hierarchical B-spline differential forms, i.e., the discrete differential forms are smooth splines and support adaptive refinements—these properties are key to enabling accurate and efficient numerical simulations. We provide locally-verifiable sufficient conditions that ensure that the discrete spline complex is exact. Numerical tests are presented to support the theoretical results, and the examples discussed include complexes that satisfy our prescribed conditions as well as those that violate them.
KW - de Rham complex
KW - Discrete differential forms
KW - Finite element exterior calculus
KW - Hierarchical B-splines
UR - http://www.scopus.com/inward/record.url?scp=85211765257&partnerID=8YFLogxK
U2 - 10.1007/s10208-024-09659-6
DO - 10.1007/s10208-024-09659-6
M3 - Article
AN - SCOPUS:85211765257
SN - 1615-3375
JO - Foundations of Computational Mathematics
JF - Foundations of Computational Mathematics
ER -