Long-term Behavior of Mean-field Noisy Bounded Confidence Models with Distributed Radicals

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

2 Citations (Scopus)
24 Downloads (Pure)

Abstract

In this paper, we consider the mean-field model of noisy bounded confidence opinion dynamics under exogenous influence of static radical opinions. The long-term behavior of the model is analyzed by providing a sufficient condition for exponential convergence of the dynamics to stationary state. The stationary state is also characterized by a global estimate for a sufficiently large noise. Furthermore, we consider the order-disorder transition in the model in order to identify the effect of the (relative) mass of the radicals on the critical noise level at which this transition occurs. A numerical scheme for approximating the critical noise level is provided and validated through numerical simulations of the mean-field model and the corresponding agent-based model for a particular distribution of radical opinions.

Original languageEnglish
Title of host publicationProceedings of the IEEE 58th Conference on Decision and Control, CDC 2019
PublisherIEEE
Pages6158-6163
ISBN (Electronic)978-1-7281-1398-2
DOIs
Publication statusPublished - 2019
Event58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France
Duration: 11 Dec 201913 Dec 2019

Conference

Conference58th IEEE Conference on Decision and Control, CDC 2019
Country/TerritoryFrance
CityNice
Period11/12/1913/12/19

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Long-term Behavior of Mean-field Noisy Bounded Confidence Models with Distributed Radicals'. Together they form a unique fingerprint.

Cite this