Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis

Francisco Rubio Rincon, Laurens Welles, Carlos Lopez Vazquez, M. Nierychlo, Ben Abbas, Mitchell Geleijnse, P.H. Nielsen, Mark C.M. van Loosdrecht, Damir Brdjanovic

Research output: Contribution to journalArticleScientificpeer-review

47 Citations (Scopus)
65 Downloads (Pure)


Thiothrix caldifontis was the dominant microorganism (with an estimated bio-volume of 65 ± 3%) in a lab-scale enhanced biological phosphorus removal (EBPR) system containing 100 mg of sulphide per litre in the influent. After a gradual exposure to the presence of sulphide, the EBPR system initially dominated by Candidatus Accumulibacter phosphatis Clade I (98 ± 3% bio-volume) (a known polyphosphate accumulating organism, PAO) became enriched with T. caldifontis. Throughout the different operating conditions studied, practically 100% phosphate removal was always achieved. The gradual increase of the sulphide content in the medium (added to the anaerobic stage of the alternating anaerobic-aerobic sequencing batch reactor) and the adjustment of the aerobic hydraulic retention time played a major role in the enrichment of T. caldifontis. T. caldifontis exhibited a mixotrophic metabolism by storing carbon anaerobically as poly-β-hydroxy-alkanoates (PHA) and generating the required energy through the hydrolysis of polyphosphate. PHA was used in the aerobic period as carbon and energy source for growth, polyphosphate, and glycogen formation. Apparently, extra energy was obtained by the initial accumulation of sulphide as an intracellular sulphur, followed by its gradual oxidation to sulphate. The culture enriched with T. caldifontis was able to store approximately 100 mg P/g VSS. This research suggests that T. caldifontis could behave like PAO with a mixotrophic metabolism for phosphorus removal using an intracellular sulphur pool as energy source. These findings can be of major interest for the biological removal of phosphorus from wastewaters with low organic carbon concentrations containing reduced S-compounds like those (pre-)treated in anaerobic systems or from anaerobic sewers.
Original languageEnglish
Pages (from-to)53-64
Number of pages12
JournalWater Research
Publication statusPublished - Jul 2017


  • Thiothrix caldifontis
  • Candidatus Accumulibacter
  • Mixotrophic phosphorus removal
  • Biological removal of phosphorus
  • Sulphide oxidation
  • Elemental sulphur


Dive into the research topics of 'Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis'. Together they form a unique fingerprint.

Cite this