Loss-of-Control Prediction of a Quadcopter Using Recurrent Neural Networks

Research output: Contribution to journalArticleScientificpeer-review

11 Downloads (Pure)


Loss of control (LOC) is a prevalent cause of drone crashes. Onboard prevention systems should be designed requiring low computing power, for which data-driven techniques provide a promising solution. This study proposes the use of recurrent neural networks (RNNs) for LOC prediction. Four architectures were trained in order to identify which RNN configuration is most suitable and if this model can predict LOC for changing aerodynamic characteristics, wind conditions, quadcopter types, and LOC events. One-hundred and seventy-two real-world LOC events were conducted using a 53 g Tiny Whoop, a 73 g URUAV UZ85, and a 265 g GEPRC CineGO quadcopter. For these flights, LOC was initiated by demanding an excessive yaw rate (2000 deg/s), which provokes an unrecoverable upset and subsequent crash. All RNNs were trained using only onboard sensor measurements. It was found that the commanded rotor values provided the clearest early warning signals for LOC because these values showed saturation before LOC. Moreover, all four architectures could correctly and reliably predict the impending LOC event 2 s before it actually occurred. Furthermore, to investigate generality of the methodology, the predictors were successfully applied to flight data in which the quadcopter mass, blade diameter, and blade count were varied.
Original languageEnglish
Pages (from-to)648-659
Number of pages12
JournalJournal of Aerospace Information Systems (online)
Issue number10
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


Dive into the research topics of 'Loss-of-Control Prediction of a Quadcopter Using Recurrent Neural Networks'. Together they form a unique fingerprint.

Cite this