Lossy Geometry Compression for High Resolution Voxel Scenes

R.M. van der Laan, L. Scandolo, E. Eisemann

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

Abstract

Sparse Voxel Directed Acyclic Graphs (SVDAGs) losslessly compress highly detailed geometry in a highresolution binary voxel grid by identifying matching elements. This representation is suitable for highperformance real-time applications, such as free-viewpoint videos and high-resolution precomputed shadows. In this work, we introduce a lossy scheme to further decrease memory consumption by minimally modifying the underlying voxel grid to increase matches. Our method efficiently identifies groups of similar but rare subtrees in an SVDAG structure and replaces them with a single common subtree representative. We test our compression strategy on several standard voxel datasets, where we obtain memory reductions of 10% up to 50% compared to a standard SVDAG, while introducing an error (ratio of modified voxels to voxel count) of only 1% to 5%. Furthermore, we show that our method is complementary to other state of the art SVDAG optimizations, and has a negligible effect on real-time rendering performance.
Original languageEnglish
Title of host publicationProceedings of the ACM on Computer Graphics and Interactive Techniques
Volume3
Edition1
Publication statusPublished - May 2020
Event2020 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games -
Duration: 14 Sep 202018 Sep 2020
Conference number: 24
https://i3dsymposium.github.io/2020/

Conference

Conference2020 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
Abbreviated titlei3D 2020
Period14/09/2018/09/20
Internet address

Fingerprint Dive into the research topics of 'Lossy Geometry Compression for High Resolution Voxel Scenes'. Together they form a unique fingerprint.

Cite this