TY - GEN
T1 - Low Latency IoT/M2M Using Nano-Satellites
AU - van 't Hof, Jos
AU - Karunanithi, Visweswaran
AU - Speretta, Stefano
AU - Verhoeven, Chris
AU - McCune, E.W.
PY - 2019
Y1 - 2019
N2 - Nano-satellite IoT/M2M missions are gaining popularity in recent time. Various companies have launched their pilot missions last year in 2018 and all these companies intend to place a constellation in (V)LEO that can communicate with low power sensors on the ground (sometimes remote locations) and relay it back to the end-user who is monitoring these sensors. This paper discusses two possible architectures of using nano-satellites for low latency IoT/M2M, by presenting information such as, number of satellites needed, number of orbital planes needed and communication strategy. The first proposed architecture will comprise of a self-sustaining network of nano-satellites that communicate with low power, low data-rate sensors on the ground and relay the data to rest of the nano-satellites in the network using inter-satellite links, which is downlinked by a nano-satellite that is in the view of a ground station that is connected to IMT. The second proposed architecture will use nano-satellites to communicate with low power, low data-rate sensors on the ground and relay it to satellites that intend to provide internet from space (Mega-constellation). The internet constellations considered in this study for the second architecture are: Telesat’s constellation, SpaceX’s Starlink, OneWeb’s constellation, Astrome’s SpaceNet constellation and Audacy’s constellation. Using both these architectures, it can be seen that the latency can be reduced considerably.
AB - Nano-satellite IoT/M2M missions are gaining popularity in recent time. Various companies have launched their pilot missions last year in 2018 and all these companies intend to place a constellation in (V)LEO that can communicate with low power sensors on the ground (sometimes remote locations) and relay it back to the end-user who is monitoring these sensors. This paper discusses two possible architectures of using nano-satellites for low latency IoT/M2M, by presenting information such as, number of satellites needed, number of orbital planes needed and communication strategy. The first proposed architecture will comprise of a self-sustaining network of nano-satellites that communicate with low power, low data-rate sensors on the ground and relay the data to rest of the nano-satellites in the network using inter-satellite links, which is downlinked by a nano-satellite that is in the view of a ground station that is connected to IMT. The second proposed architecture will use nano-satellites to communicate with low power, low data-rate sensors on the ground and relay it to satellites that intend to provide internet from space (Mega-constellation). The internet constellations considered in this study for the second architecture are: Telesat’s constellation, SpaceX’s Starlink, OneWeb’s constellation, Astrome’s SpaceNet constellation and Audacy’s constellation. Using both these architectures, it can be seen that the latency can be reduced considerably.
KW - (Mega-)constellation
KW - Inter-satellite link
KW - IoT
KW - Latency
KW - Nano-satellite
UR - http://www.scopus.com/inward/record.url?scp=85079113780&partnerID=8YFLogxK
M3 - Conference contribution
VL - 2019-October
T3 - Proceedings of the International Astronautical Congress, IAC
BT - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019
PB - IAC
ER -