Low Temperature Fine Pitch All-Copper Interconnects Combining Photopatternable Underfill Films

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

1 Citation (Scopus)
27 Downloads (Pure)

Abstract

The trend to 3D and heterogeneous integration enable driving multi-functional blocks in one package. Flip-chip integration is currently playing an important role and is based on solder joints. To overcome the limitations of solder joints, all-copper interconnects have been investigated to meet electrical, thermal, and reliability demands in 3D integration. The underfill process is widely applied in flip-chip encapsulation technology. We propose a novel wafer-scale all-Cu interconnect method combining epoxy-based photo-patternable polymer as self-aligned underfill layer with the patterned copper nanoparticles interconnects. The resulting test wafers were able to pattern 20 µm pitch copper nanoparticle-paste interconnects on both substrates with and without photoimageable polymer. The Cu paste was applied to form the interconnects and was sintered after bonding process. Free-standing nanocopper is sintered to obtain mechanical properties with a Young's modulus of 112 GPa. All-Cu interconnects with diameter of 50 µm and 100 µm were measured to achieve the specific contact resistance, ranging from 1.4 × 10-5O· cm2 to 1.0 × 10-5O· cm2 at different sintering temperature when epoxy-based underfill existing. And its resistivity was 4.54× 10-4 O· cm, compared to 5.86× 10-4O· cn for the all-Cu interconnects without underfill.

Original languageEnglish
Title of host publicationProceedings - IEEE 73rd Electronic Components and Technology Conference, ECTC 2023
PublisherIEEE
Pages1237-1243
Number of pages7
ISBN (Electronic)9798350334982
DOIs
Publication statusPublished - 2023
Event73rd IEEE Electronic Components and Technology Conference, ECTC 2023 - Orlando, United States
Duration: 30 May 20232 Jun 2023

Publication series

NameProceedings - Electronic Components and Technology Conference
Volume2023-May
ISSN (Print)0569-5503

Conference

Conference73rd IEEE Electronic Components and Technology Conference, ECTC 2023
Country/TerritoryUnited States
CityOrlando
Period30/05/232/06/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • all-Cu interconnects
  • copper nanoparticles
  • epoxy-based photoresist
  • flip chip
  • underfill

Fingerprint

Dive into the research topics of 'Low Temperature Fine Pitch All-Copper Interconnects Combining Photopatternable Underfill Films'. Together they form a unique fingerprint.

Cite this