Mapping-aware Biased Training for Accurate Memristor-based Neural Networks

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

3 Citations (Scopus)
37 Downloads (Pure)

Abstract

Memristor-based computation-in-memory (CIM) can achieve high energy efficiency by processing the data within the memory, which makes it well-suited for applications like neural networks. However, memristors suffer from conductance variation problem where their programmed conductance values deviate from the desired values. Such variations lead to computational errors that result in degraded inference accuracy in CIM-based neural networks. In this paper, we present a mapping-aware biased training methodology to mitigate the impact of conductance variation on CIM-based neural networks. We first determine which conductance states of the memristor are inherently more immune to variation. The neural network is then trained under the constraint that important weights can only take numeric values which directly get mapped to such favorable states. Simulation results show that our proposed mapping-aware biased training achieves up to 2.4× hardware accuracy compared to the conventional training.

Original languageEnglish
Title of host publicationAICAS 2023 - IEEE International Conference on Artificial Intelligence Circuits and Systems, Proceeding
PublisherIEEE
ISBN (Electronic)9798350332674
DOIs
Publication statusPublished - 2023
Event5th IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2023 - Hangzhou, China
Duration: 11 Jun 202313 Jun 2023

Publication series

NameAICAS 2023 - IEEE International Conference on Artificial Intelligence Circuits and Systems, Proceeding

Conference

Conference5th IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2023
Country/TerritoryChina
CityHangzhou
Period11/06/2313/06/23

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Mapping-aware Biased Training for Accurate Memristor-based Neural Networks'. Together they form a unique fingerprint.

Cite this