Measurements and discrimination of drones and birds with a multi-frequency multistatic radar system

Riccardo Palamà*, Francesco Fioranelli, Matthew Ritchie, Michael Inggs, Simon Lewis, Hugh Griffiths

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)
32 Downloads (Pure)


This article presents the results of a series of measurements of multistatic radar signatures of small UAVs at L- and X-bands. The system employed was the multistatic multiband radar system, NeXtRAD, consisting of one monostatic transmitter-receiver and two bistatic receivers. NeXtRAD is capable of recording simultaneous bistatic and monostatic data with baselines and two-way bistatic range of the order of a few kilometres. The paper presents an empirical analysis with range-time plots and micro-Doppler signatures of UAVs and birds of opportunity recorded at several hundred metres of distance. A quantitative analysis of the overall signal-to-noise ratio is presented along with a comparison between the power of the signal scattered from the drone body and blades. A simple study with empirically obtained features and four supervised-learning classifiers for binary drone versus non-drone separation is also presented. The results are encouraging with classification accuracy consistently above 90% using very simple features and classification algorithms.

Original languageEnglish
Pages (from-to)841-852
Number of pages12
JournalIET Radar, Sonar and Navigation
Issue number8
Publication statusPublished - 2021


Dive into the research topics of 'Measurements and discrimination of drones and birds with a multi-frequency multistatic radar system'. Together they form a unique fingerprint.

Cite this