TY - GEN
T1 - Microstructure-based 3D modelling of diffusivity in sound and cracked cement paste
AU - Mazaheripour, Hadi
AU - Faria, Rui
AU - Azenha, Miguel
AU - Ye, Guang
AU - Schlangen, Erik
N1 - Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
PY - 2018
Y1 - 2018
N2 - Exposing reinforced concrete (RC) structures to aggressive environmental conditions is one of the main reasons that may limit their service life. Diffusion of chloride ions through concrete cover is one of the most damaging environmental actions, since it may cause corrosion of steel reinforcement. Therefore, modelling this phenomenon allows supporting a better durability assessment of RC structures. In the present study, a modelling strategy considering a 3D cement paste microstructure, which is obtained using HYMOSTRUC3D software, is adopted to compute the diffusion process in saturated sound and cracked cement pastes. The diffusion process is calculated as a statistical result of random walkers (representing ionic species) through the porosity of the cement paste microstructure. The simulation is implemented using a random walk algorithm (RWA), which is compatible to be used in sound and cracked cement paste microstructures. Additionally, the proposed modelling strategy aims to establish a relation between the diffusion coefficient of cement paste and the level of tensile damage in the microstructure, which is obtained by considering the microcrack development in the cement paste. A lattice fracture model is employed to simulate the microcracks. The primary results of the proposed model are presented and discussed in the present paper.
AB - Exposing reinforced concrete (RC) structures to aggressive environmental conditions is one of the main reasons that may limit their service life. Diffusion of chloride ions through concrete cover is one of the most damaging environmental actions, since it may cause corrosion of steel reinforcement. Therefore, modelling this phenomenon allows supporting a better durability assessment of RC structures. In the present study, a modelling strategy considering a 3D cement paste microstructure, which is obtained using HYMOSTRUC3D software, is adopted to compute the diffusion process in saturated sound and cracked cement pastes. The diffusion process is calculated as a statistical result of random walkers (representing ionic species) through the porosity of the cement paste microstructure. The simulation is implemented using a random walk algorithm (RWA), which is compatible to be used in sound and cracked cement paste microstructures. Additionally, the proposed modelling strategy aims to establish a relation between the diffusion coefficient of cement paste and the level of tensile damage in the microstructure, which is obtained by considering the microcrack development in the cement paste. A lattice fracture model is employed to simulate the microcracks. The primary results of the proposed model are presented and discussed in the present paper.
M3 - Conference contribution
VL - PRO 127
T3 - Rilem proceedings
SP - 321
EP - 332
BT - Proceedings of the Symposium on Concrete Modelling
A2 - Schlangen, Erik
A2 - de Schutter, Geert
A2 - Šavija, Branko
A2 - Zhang, Hongzhi
A2 - Romero Rodriguez, Claudia
PB - Rilem
T2 - Symposium on Concrete Modelling
Y2 - 27 August 2018 through 30 August 2018
ER -