TY - JOUR
T1 - Microstructure evolution during high-temperature partitioning of a Medium-Mn Quenching and Partitioning steel
AU - Ayenampudi, S.
AU - Celada-Casero, C.
AU - Sietsma, J.
AU - Santofimia, M. J.
PY - 2019
Y1 - 2019
N2 - Medium-Mn Quenching & Partitioning (Q&P) steels have been recently considered as potential candidates for the 3rd generation advanced high-strength steels. The processing of these steels aims to induce the partitioning of substitutional alloying elements from martensite to austenite during an isothermal treatment at high temperature, where the diffusivity of substitutional alloying elements is sufficiently high. In this way, austenite increases its concentration of austenite-stabilising elements and thus its thermal stability. The present study aims to investigate the microstructural evolution during high temperature partitioning treatments in a medium-Mn steel and the possible occurrence of additional phase transformations that may compete with the process of atomic partitioning between martensite and austenite. Q&P routes in which the partitioning steps take place in the range of 400 °C–600 °C for times up to 3600 s were investigated. The final microstructures display an increased fraction of retained austenite with increasing holding times during partitioning at 400 °C, while at higher partitioning temperatures, 450 °C–600 °C, leads to cementite precipitation in austenite films and pearlite formation in blocky austenite, resulting in a decrease of the fraction of retained austenite with the holding time. This observation is supported with theoretical calculations of the volume change, suggesting that for maximising the fraction of retained austenite, short holding times are preferred during partitioning at high temperatures. Observations from the current study reveal that the successful application of high-temperature partitioning treatments in medium-Mn steels requires microstructure design strategies to minimize or suppress competitive reactions.
AB - Medium-Mn Quenching & Partitioning (Q&P) steels have been recently considered as potential candidates for the 3rd generation advanced high-strength steels. The processing of these steels aims to induce the partitioning of substitutional alloying elements from martensite to austenite during an isothermal treatment at high temperature, where the diffusivity of substitutional alloying elements is sufficiently high. In this way, austenite increases its concentration of austenite-stabilising elements and thus its thermal stability. The present study aims to investigate the microstructural evolution during high temperature partitioning treatments in a medium-Mn steel and the possible occurrence of additional phase transformations that may compete with the process of atomic partitioning between martensite and austenite. Q&P routes in which the partitioning steps take place in the range of 400 °C–600 °C for times up to 3600 s were investigated. The final microstructures display an increased fraction of retained austenite with increasing holding times during partitioning at 400 °C, while at higher partitioning temperatures, 450 °C–600 °C, leads to cementite precipitation in austenite films and pearlite formation in blocky austenite, resulting in a decrease of the fraction of retained austenite with the holding time. This observation is supported with theoretical calculations of the volume change, suggesting that for maximising the fraction of retained austenite, short holding times are preferred during partitioning at high temperatures. Observations from the current study reveal that the successful application of high-temperature partitioning treatments in medium-Mn steels requires microstructure design strategies to minimize or suppress competitive reactions.
KW - Austenite stability
KW - Carbon partitioning
KW - High-temperature partitioning
KW - Medium manganese steel
KW - Quenching and partitioning
UR - http://www.scopus.com/inward/record.url?scp=85073197481&partnerID=8YFLogxK
U2 - 10.1016/j.mtla.2019.100492
DO - 10.1016/j.mtla.2019.100492
M3 - Article
AN - SCOPUS:85073197481
SN - 1359-6454
VL - 8
JO - Materialia
JF - Materialia
M1 - 100492
ER -