Mission Analysis and Navigation Design for Uranus Atmospheric Flight

Emilie Bessette, E. Mooij, D.M. Stam

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review


We present a 3 Degrees of Freedom mission design and analysis for in-situ probing of Uranus' atmosphere consisting of two un-propelled gliders and one orbiting spacecraft in continuous line of sight. We focus on the study of the gliders' navigation and science modules. Because of the lack of a Global Navigation Satellite System around Uranus and the ineffective use of optical sensors due to the planet's large distance to the Sun and high atmospheric opacity, the post-processing relation between the vehicles' estimated state and measured scientific data is investigated to yield accurate state estimations. In-situ probing by the two gliders will make it possible to measure spatially variable atmospheric properties over a flight duration of up to 12 Earth days, as compared to a few hours for a conventional descent probe. Future work will include a 6 Degrees of Freedom simulation of the vehicles' flight, the chosen planet's wind model, a Flush Air Data Sensor as an additional navigation sensor, and a band-pass filter to reduce the estimated variables' noise.
Original languageEnglish
Title of host publicationAIAA SCITECH 2022 Forum
Number of pages16
ISBN (Electronic)978-1-62410-631-6
Publication statusPublished - 2022
EventAIAA SCITECH 2022 Forum - virtual event
Duration: 3 Jan 20227 Jan 2022

Publication series

NameAIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022


ConferenceAIAA SCITECH 2022 Forum


Dive into the research topics of 'Mission Analysis and Navigation Design for Uranus Atmospheric Flight'. Together they form a unique fingerprint.

Cite this