Mitigation of non-CO2 aviation’s climate impact by changing cruise altitudes

Sigrun Matthes*, Ling Lim, Ulrike Burkhardt, Katrin Dahlmann, Simone Dietmüller, Volker Grewe, Amund S. Haslerud, Johannes Hendricks, Bethan Owen, Giovanni Pitari, Mattia Righi, Agnieszka Skowron

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

17 Citations (Scopus)
57 Downloads (Pure)

Abstract

Aviation is seeking for ways to reduce its climate impact caused by CO2 emissions and non-CO2 effects. Operational measures which change overall flight altitude have the potential to reduce climate impact of individual effects, comprising CO2 but in particular non-CO2 effects. We study the impact of changes of flight altitude, specifically aircraft flying 2000 feet higher and lower, with a set of global models comprising chemistry-transport, chemistry-climate and general circulation models integrating distinct aviation emission inventories representing such alternative flight altitudes, estimating changes in climate impact of aviation by quantifying radiative forcing and induced temperature change. We find in our sensitivity study that flying lower leads to a reduction of radiative forcing of non-CO2 effects together with slightly increased CO2 emissions and impacts, when cruise speed is not modified. Flying higher increases radiative forcing of non-CO2 effects by about 10%, together with a slight decrease of CO2 emissions and impacts. Overall, flying lower decreases aviation-induced temperature change by about 20%, as a decrease of non-CO2 impacts by about 30% dominates over slightly increasing CO2 impacts assuming a sustained emissions scenario. Those estimates are connected with a large but unquantified uncertainty. To improve the understanding of mechanisms controlling the aviation climate impact, we study the geographical distributions of aviation-induced modifications in the atmosphere, together with changes in global radiative forcing and suggest further efforts in order to reduce long standing uncertainties.

Original languageEnglish
Article number36
Pages (from-to)1-20
Number of pages20
JournalAerospace
Volume8
Issue number2
DOIs
Publication statusPublished - 2021

Keywords

  • Alternative aircraft trajectories
  • Alternative flight altitudes
  • Aviation climate impact
  • Mitigation strategies
  • Nitrogen oxides
  • Non-CO effects

Fingerprint

Dive into the research topics of 'Mitigation of non-CO2 aviation’s climate impact by changing cruise altitudes'. Together they form a unique fingerprint.

Cite this