Mitochondrial physiology

E. Gnaiger, D.G.G. McMillan, More Authors

Research output: Contribution to journalArticlepeer-review

26 Downloads (Pure)


As the knowledge base and importance of mitochondrial physiology to evolution, health and diseaseexpands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followthe latest SI guidelines and those of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute BEC 2020.1 doi:10.26124/bec:2020-0001.v1www.bioenergetics-communications.org3of 44to reproducibility between laboratories and thussupport the development of datarepositoriesof mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery.
Original languageEnglish
Number of pages44
JournalBioenergetics Communications
Publication statusPublished - 2020

Bibliographical note

Much more authors from MitoEAGLE Task Group


Dive into the research topics of 'Mitochondrial physiology'. Together they form a unique fingerprint.

Cite this