Abstract
This paper presents a rule-compliant trajectory optimization method for the guidance and control of Autonomous Surface Vessels. The method builds on Model Predictive Contouring Control and incorporates the International Regulations for Preventing Collisions at Sea relevant to motion planning. We use these rules for traffic situation assessment and to derive traffic-related constraints that are inserted in the optimization problem. Our optimization-based approach enables the formalization of abstract verbal expressions, such as traffic rules, and their incorporation in the trajectory optimization algorithm along with the dynamics and other constraints that dictate the system's evolution over a sufficiently long planning horizon. The ability to plan considering different types of constraints and the system's dynamics, over a long horizon in a unified manner, leads to a proactive motion planner that mimics rule-compliant maneuvering behavior, suitable for navigation in mixed-traffic environments. The efficacy and scalability of the derived algorithm are validated in different simulation scenarios, including complex traffic situations with multiple Obstacle Vessels.
Original language | English |
---|---|
Pages (from-to) | 9895-9908 |
Number of pages | 14 |
Journal | IEEE Transactions on Intelligent Transportation Systems |
Volume | 25 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Autonomous surface vessels
- Costs
- Heuristic algorithms
- model predictive control
- Navigation
- Optimization
- Regulation
- Task analysis
- traffic regulations
- Trajectory optimization