Abstract
Functional ultrasound (fUS) is a novel neuroimaging technique that measures brain hemodynamics through a time series of Doppler images. The measured spatiotemporal hemodynamic changes reflect changes in neural activity through the neurovascular coupling (NVC). Often, such image time series is used to analyze dynamic functional connectivity (dFC) by directly computing a connectivity metric between the measured hemodynamic signals, ignoring the functional connectomics of underlying neural populations. This work proposes a novel fUS signal model, consisting of a hidden Markov model (HMM) cascaded with a convolutive model, that captures how fUS signals arise from a generative perspective while incorporating high-level biological functioning of neural populations. Consequently, the developed model enables inference of functional connectivity networks, being co-activation patterns (CAPs) of neural populations. Our results show that our methods can identify biologically plausible networks of functional connectivity. Furthermore, this method captures a difference in brain dynamics between wild-type and ${Shank2}^{-/-}$ mouse mutants.
Original language | English |
---|---|
Title of host publication | ICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings |
Publisher | IEEE |
Number of pages | 5 |
ISBN (Electronic) | 9798350302615 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Publication series
Name | ICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings |
---|
Conference
Conference | 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 |
---|---|
Country/Territory | Greece |
City | Rhodes Island |
Period | 4/06/23 → 10/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- co-activation patterns
- deconvolution
- Dynamic functional connectivity
- functional ultrasound
- hidden Markov models