Abstract
Functional ultrasound (fUS) is a high-sensitivity neuroimaging technique that images cerebral blood volume changes, which reflect neuronal activity in the corresponding brain area. fUS measures hemodynamic changes which are typically modeled as the output of a linear time-invariant system, characterized by an impulse response known as the hemodynamic response function (HRF), and a binary representation of the stimulus signal as input. In this work, we quantify the difference between a linear and a nonlinear time-invariant HRF model in terms of data fitting and prediction performance. Our results on fUS data obtained from two mice reveal that: (a) including nonlinearities in the HRF achieves a significantly more precise modeling of the fUS signal compared to the linear assumption under certain stimulus conditions and (b) a second-order Volterra series approximation can be used to characterize the nonlinear model and predict responses to stimuli.
Original language | English |
---|---|
Title of host publication | ICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISBN (Electronic) | 9798350302615 |
DOIs | |
Publication status | Published - 2023 |
Event | 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Publication series
Name | ICASSPW 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, Proceedings |
---|
Conference
Conference | 2023 IEEE International Conference on Acoustics, Speech and Signal Processing Workshops, ICASSPW 2023 |
---|---|
Country/Territory | Greece |
City | Rhodes Island |
Period | 4/06/23 → 10/06/23 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- (nonlinear) hemodynamic response
- Functional ultrasound
- Volterra series