Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification

Antonio Maria D’Altri*, Vasilis Sarhosis, Gabriele Milani, Jan Rots, Serena Cattari, Sergio Lagomarsino, Elio Sacco, Antonio Tralli, Giovanni Castellazzi, Stefano de Miranda

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

171 Citations (Scopus)

Abstract

Masonry structures, although classically suitable to withstand gravitational loads, are sensibly vulnerable if subjected to extraordinary actions such as earthquakes, exhibiting cracks even for events of moderate intensity compared to other structural typologies like as reinforced concrete or steel buildings. In the last half-century, the scientific community devoted a consistent effort to the computational analysis of masonry structures in order to develop tools for the prediction (and the assessment) of their structural behavior. Given the complexity of the mechanics of masonry, different approaches and scales of representation of the mechanical behavior of masonry, as well as different strategies of analysis, have been proposed. In this paper, a comprehensive review of the existing modeling strategies for masonry structures, as well as a novel classification of these strategies are presented. Although a fully coherent collocation of all the modeling approaches is substantially impossible due to the peculiar features of each solution proposed, this classification attempts to make some order on the wide scientific production on this field. The modeling strategies are herein classified into four main categories: block-based models, continuum models, geometry-based models, and macroelement models. Each category is comprehensively reviewed. The future challenges of computational analysis of masonry structures are also discussed.
Original languageEnglish
Pages (from-to)1153-1185
Number of pages33
JournalArchives of Computational Methods in Engineering
Volume27 (2020)
Issue number4
DOIs
Publication statusPublished - 2019

Fingerprint

Dive into the research topics of 'Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification'. Together they form a unique fingerprint.

Cite this