Abstract
In agile software development, proper team structures and effort estimates are crucial to ensure the on-time delivery of software projects. Delivery performance can vary due to the influence of changes in teams, resulting in team dynamics that remain largely unexplored. In this paper, we explore the effects of various aspects of teamwork on delays in software deliveries. We conducted a case study at ING and analyzed historical log data from 765,200 user stories and 571 teams to identify team factors characterizing delayed user stories. Based on these factors, we built models to predict the likelihood and duration of delays in user stories. The evaluation results show that the use of team-related features leads to a significant improvement in the predictions of delay, achieving on average 74%-82% precision, 78%-86% recall and 76%-84% F-measure. Moreover, our results show that team-related features can help improve the prediction of delay likelihood, while delay duration can be explained exclusively using them. Finally, training on recent user stories using a sliding window setting improves the predictive performance; our predictive models perform significantly better for teams that have been stable. Overall, our results indicate that planning in agile development settings can be significantly improved by incorporating team-related information and incremental learning methods into analysis/predictive models.
Original language | English |
---|---|
Title of host publication | 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) |
Subtitle of host publication | Proceedings |
Publisher | IEEE |
Pages | 991-1002 |
Number of pages | 12 |
ISBN (Electronic) | 978-1-6654-0337-5 |
ISBN (Print) | 978-1-6654-4784-3 |
Publication status | Published - 2021 |
Event | IEEE/ACM International Conference on Automated Software Engineering - virtual event Duration: 14 Nov 2021 → 20 Nov 2021 |
Conference
Conference | IEEE/ACM International Conference on Automated Software Engineering |
---|---|
Abbreviated title | ASE 2021 |
Period | 14/11/21 → 20/11/21 |